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Non-isothermal calorimetric 
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energies 
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Equations suitable for computing specific interfacial energies of precipitates dissolv- 
ing by a first order transformation were developed on the basis of the singularities 
taking place at the critical temperature, T o , under equilibrium conditions. These 
equations employ data which can be determined by differential scanning calori- 
metry. Also the conditions for reaching dynamic equilibrium of particle volume frac- 
tion below Tc are analysed in terms of a maximum permissible experimental heating 
rate. The results obtained for disperse order in 0~Cu-AI alloys are in good agreement 
with those expected from the observed particle features. 

1. I n t r o d u c t i o n  
The physical characteristics of solid state inter- 
faces play an important role in many aspects of 
materials behaviour [1]. One of the major para- 
meters which enable one to evaluate quan- 
titatively these characteristics is the specific 
interfacial energy, a, which is fundamental to 
theories of recrystallization, grain growth, frac- 
ture, precipitate nucleation and growth and 
strength of dispersed phase alloys. Most of 
direct and indirect techniques developed for 
measuring a are concerned with boundaries in 
single phase materials [2] (e.g. grain or twin 
boundaries), instead there has been little pro- 
gress in obtaining absolute values of a in a multi- 
phase material particularly when one phase is 
finely dispersed in the other. 

Two major papers exist in the literature 
employing calorimetric methods: in one, o- was 
calculated from solution calorimetry of alloys 
containing varying dispersions (and hence vary- 
ing interfacial areas) of two phases [3]; in the 
other ~r was calculated from isothermal 
calorimetry by measuring the heat evolution 
during precipitate coarsening [4]. 

The purpose of the present contribution is to 
develop expressions suitable to compute a for 

precipitates which undergo a first order tran- 
sition during dissolution by employing data 
obtained from non-isothermal differential scan- 
ning calorimetry (DSC). These expressions are 
tested in the determination of the specific inter- 
facial free energy of Cu3A1 ordered domains in 
eCu-A1 alloys which are a good example of a 
stable heterogeneous microstructure [5-7]. 

2. Theoretical  considerations 
2.1. Evaluation of 
The method presented here for calculating pre- 
cipitate interfacial energies utilizes as primary 
inputs the Gibbs-Thomson and mass conser- 
vation equations, together with the singularities 
occurring at the critical temperature during 
particle dissolution by a first order transfor- 
mation. 

The generalized Gibbs-Thomson equation 
for the variation of solubility with particle size 
can be written as [8]: 

(4Vm0"~ 
CM-- c o e x p \ ~ j  = F(CM, D , T ) - 0  

(1) 

where CM is the equilibrium solubility adjacent to 
a particle of diameter D, co is the equilibrium 
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solubility adjacent to an infinitely large particle, 
Vm is the molar volume of the precipitate phase, 
R is the universal gas constant and T the 
absolute temperature. F(CM, D, T) is an implicit 
function of  CM, D and T. I f  spherical precipitates 
are considered, the actual volume fraction, V, as 
a function of the extended volume fraction, Vex, 
is given by [9]: 

V = 1 - exp ( -  Vex) (2) 

V~ x is the volume fraction that would exist if 
there were no impingement and it is related to 
the precipitate number per unit volume, N (con- 
sidered unchanged up to the critical temperature 
To) by the expression: 

\ 

Vex = -~ ND 3 (3) 

Since the concentration rise at the precipitate 
surface is quite small [10], the required balance 
of material can be set as: 

-- CM 
V - (4) 

Cp - -  c M 

where Cp and ~ are the particle and alloy com- 
positions respectively. Then, from Equations 2, 
3 and 4: 

( ) ' x ~ -- c M 
1 -- exp --6ND3 Cp- c~ 

= G(cM, D) = 0 (5) 

where G(CM, D) is an implicit function of CM and 
D. With Equations 1 and 5, we are interested in 
determining the temperature dependence of  the 
rate of  variation of c M and D with T under 
equilibrium conditions, particularly at Tc where 
OCM/OT and OD/OT change abruptly since 
V =  V~ for T =  T~- and V =  0 for T~ +, V~ 
being the critical volume fraction (i.e. at the 
onset of  precipitate dissolution). The computa- 
tional details are given in the Appendix. Solving 
simultaneously the equations dF  = 0 and 
dG = 0, after taking T as the independent vari- 
able, we find: 

OC m (OF OG~ j_,  
OT = - \ ~ }  (6) 

and 
OD (OF j_, 
O--'-T = \ o r  OCM/ (7) 

where J is the Jacobian of  F and G with respect 

to CM and can be expressed as: 

0F 0G 0F 0G 
J = (8) 

OCM OD OD OC M 

The condition of  discontinuity of the left-hand 
side terms for the partial derivatives of 
Equations 6 and 7 at T = T~- requires J = 0. 
At this temperature: 

D = De ] 

- V~cp 
c~ = -1--------~-~ (9) 

V~ = 1 exp --~NDc 

where De is the critical diameter and e~ the 
critical equilibrium solubility adjacent to a par- 
ticle of  diameter Dc and V~ the critical volume 
fraction. Since: 

OF , OF 4c0 V m {4 Vm axl 
OCM = Z, ~ = ~ e x p ~ , ~ ]  

0G Cp -- ~ 0G x N 2 
0cM = = D 

x exp - ~ ND 

(lo) 
and considering that 

1 
V~, -- l n - -  

I - V ~ '  

after substituting Equations 9 and 10 into 
Equation 8, the specific interfacial energy yields: 

3RT~Dc (c~-- ~) (1 - - - - -~)  
tr = 4Vm ( ? -  V~cp) ln (11) 

Alternatively, Equations 1 and 5 can be written 
a s :  

T = T(D, CM), CM = CM(D,N)(12) 

It can also be demonstrated that: 

then from Equations 1 and 5 in the form of 
Equations 12 and from Equation 13, after 
imposing the required condition (OT/OD)N -- 0 
for T = T~-, Equation 11 can readily be 
obtained. If  V~ ,~ 1, that is if impingement is 
negligible, In [1/(1 - Ve)] --- In (1 + V~) _~ V~, 
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hence Equation 11 becomes: 

3RTcD c V~ (c v - ~) 
(14) 

O'f = 4Vm ( ~ _  gccp ) 

where af relates to the actual specific surface 
energy by: 

a = a r -  In (15) v~ 

In order to evaluate a, Equation 11 requires the 
knowledge of To, Dc and Vr which can be deter- 
mined making use of differential scanning calor- 
imetric (DSC) experiments. 

Generally Do, the average particle diameter at 
room temperature corresponding to a volume 
fraction V0, is available in the literature. If AHo 
is the enthalpy associated with the dissolution of 
particles at a low heating rate (where dynamic 
equilibrium prevails below To) and AH0 is the 
enthalpy associated with particle dissolution at 
high heating rate (when for kinetic reasons an off 
equilibrium volume fraction retained from room 
temperature dissolves), one has: 

Vr = (A~--~0) V 0 (16) 

If impingement is considered, the critical pre- 
cipitate diameter can be written as: 

Dr = ( 6  
rcN 

• In { [AH ~ 1 ]~1/3 

]_AH~ + exp ( - - 6  ND~ AHr IIAH0)I/ 

(17) 

Equation 17 needs the knowledge of N, which is 
not usually available. As a first approximation it 
can be set 

f A H ~  113 
De - ~ 0 0 )  Do, (18) 

furthermore if AHc - AH0, D~ = Do can be 
used. The value of V~ can be determined from 
AHo and the molar heat of dissolution of the 
precipitates, AHp. In fact, 

K 
Ve = AHp AH~ (19) 

where k = (MW)p(Qs/Qp), (MW)p being the 
molecular weight of the precipitate and Qs and 

0p, the alloy and precipitate density respectively. 
Alternatively, if AHp is unknown, but if N and 
D o are available, V~ can be obtained from 
Equation 16. Finally, To is determined as the 
onset temperature at which the DSC trace leaves 
the base line. 

2.2. The rate of equi l ibrat ion be low To 
The accuracy of the determination of a is con- 
ditioned to the fact that the system equilibrates 
during the constant heating rate experiment 
before Tc is reached. This requirement deter- 
mines a maximum heating rate, am, that can be 
employed. An estimation of am is given below. 

When the temperature is rapidly raised (or 
lowered) the alloy cannot reach momentarily the 
equilibrium state for the temperature change, 
because atomic rearrangements for the change 
need a certain time. The rate of approach to the 
equilibrium state has been treated theoretically 
by Bragg and Williams [11]. They have con- 
sidered an alloy at a temperature Twhose degree 
of order (particle volume fraction in the present 
study) is different from that corresponding to 
the dynamic equilibrium at that temperature 
and corresponds to the equilibrium degree of 
order at a different temperature 0. They assumed 
that the rate of approach to equilibrium is given 
by: 

d0d, 
where z, the time of relaxation, is the time taken 
for the departure from equilibrium to be reduced 
to 1/eth of its initial value. The time of relax- 
ation obeys a relation: T = ~0exp (E/RT), 
where r0 is a constant, E is the activation energy 
required for the interchange of atomic positions. 
Introducing the heating or cooling rate 
a = +_ dT/dt (the positive sign denotes heating) 
in Equation 20, one has: 

dO 
z a ~ - ~ +  0 = T (21) 

Solution of Equation 21 can be achieved by 
obtaining an integration factor, yielding: 

()1 (~ 0 = [ I ( r ) +  00exp a0 -To L z0 a ~-0 exp 

in which: 

I(T) = f f  T exp f~(T) exp (- -  ~-~-T) Zo 

(22) 
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where 00, which determines the final metastable 
state of  the alloy, can be estimated accordingly 
to [11]: 

ROo \o% %EJ (23) 

ec being the cooling rate, 

E 
n = - ~ p ( x ) ,  n0 = n(00) 

where 

p(x) = ~ e x p ( - X ) d x  

- (x + 2 ) - l x - l e x p ( - x ) ,  

and 

As long as 

E 
X ~ - -  

R T  

E%/RT 2 ~> exp (-- E/RT), the 
approximate solution: 

0 :  ~176 0 

can be used. This last integral is tabulated in the 
literature [12]. From Equation 22 for 0 = Tc one 
has for the maximum permissible heating rate: 

(~ em = - -  1 Tcexp - 00exp 
TO 

(25) 

where f~r = ~(T~) and T~ is the critical tem- 
perature for a given e. Usually e should be 
chosen as low as possible, but compatible with 
an observable trace. I f  Equation 24 is suitable: 

c% - %(To- J00 T e x p  - d T  (26) 

Equations 25 and 26 require to be solved by an 
iterative process, since both right side terms are 
a function of c~. I f  em results are higher than the 
value employed in the experiment, this last value 
is permissible for performing the DSC run, 
otherwise a lower value must be chosen. 
Alternatively, if the DSC run is carried out at 
some heating rate e, the O-T path can be cal- 
culated, and the temperature at which 0 = T 
can be determined. I f  such temperature results 
are lower than To, the value of  c~ is allowed to be 
used, if not, the experience should be again 

ACp, 

eo 

Oc 

0 

B ) 

~ - 2 - -  ) I ) 

| 

~ ) rc Tc (~ )  T 

A 1 

A 2 

B 1 

B 2 

Figure 1 Schematic representation of the interdependence 
between DSC thermograms and O-T paths. (Explanation of 
details is given in the text.) 

repeated with a lower a until the above condition 
is fulfilled. 

It  is noteworthy to compare schematically the 
interdependence between O-T plots and DSC 
thermograms when a transition from the frozen 
state followed by dissolution takes place. Fig. 1 
shows such a dependence when a < a m is satis- 
fied. I f  a ~ 0, the transition from I to II  occurs 
simply at T = To; the base line jumps discon- 
tinuously to region II. For  c~ < am, the onset 
temperature at which the DSC trace leaves 
region I coincides with that of  the 0 -  T diagram 
for which dO/dT is no longer zero (A1A'I). The 
peak temperature of  the transition, character- 
istic of  the maximum reaction rate, corresponds 
to the inflection point on the 0 - T p l o t  and so the 
rate of  approach to equilibrium becomes a maxi- 
mum at that temperature determined by the 
condition (dZO/dT 2) = 0 (AzA'2). Finally, 
dynamic equilibrium is achieved at the tem- 
perature at which the new base line is reached on 
the trace, reflected on the O-T diagram by the 
threshold temperature for which (dO/dT) = 1 
(AA'). As we are concerned with dissolution by 
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a first order transition the differential heat 
capacity, ACp ~ ov if ~ ~ 0 and the transition 
occurs at the true critical temperature, T~. For  
the heating rate considered, Tc shifts to the right, 
so a somewhat overestimated value for T c is 
obtained (B~B]). In fact, for determining the 
exact value, several runs at different e must be 
carried out and the different values of  To should 
be extrapolated to a = 0 in a T~(e)-a plot. How- 
ever, if ~ < am is small enough, the correspond- 
ing overestimate also shifts. The remaining 
explanation of the scheme of Fig. l is straight- 
forward. 

3. Results and discussion 
All the above analysis will be applied in this 
section in computing specific interfacial energies 
of disperse ordered domains in ~Cu-A1 alloys 
from dissolution DSC traces. Three alloys con- 
taining 19/13/6.5at% A1 were furnace cooled 
at a cooling rate of  15 K h-~. The preparation of 
these alloys and the details of  the microcalor- 
imetric experiments can be found elsewhere [13, 
14]. A high purity well-annealed copper sample 
was used as reference material. 

In order to determine the appropriate heating 
rate to be employed in the DSC runs, available 
data for E and z 0 are previously needed. With 
these data 00 can be determined. For  Cu-15A1 
[5, 6] and Cu-18A1 [6] the transformation for an 
equilibrium state of  order to another state 
caused by a sudden small jump of  temperature 
was studied by residual resistivity analysis. 
From these experiments one finds for Cu- l  5AI: 
% = 2.06 x 10-13see, E =  151kJmol l and 
for Cu-18AI: to = 3.49 x 10-13see, E = 181 
kJ tool I. By substituting each pair of  values in 
Equation 23 and after taking ~ = 15Kh-~: 
00 = 493 and 494K for Cu-15A1 and Cu-18A1, 
respectively. These values are expected to be 
almost the same for Cu-13A1 and Cu-19A1. 
Also % and E f o r  Cu-15A1 and Cu-18A1 can be 

Figure 2 0 - T  relation for two alloys furnace 
cooled at a rate of  15Kh J. The condition 
0 = T < T~ for dynamic equilibrium is achieved 
in both cases at the indicated heating rate. 

600 

assumed to be very close to those for Cu-13A1 
and Cu-19A1, respectively, because of  the low A1 
content difference between the alloys in each 
case. 

With the computed values of  00, z0 and E, the 
O--T path was calculated for both alloys by 
means of Equation 22 using tentatively a heating 
rate e = 0 .033Ksec-k  The results are plotted 
in Fig. 2. The critical temperature was deter- 
mined from the corresponding processed 
thermograms appearing in Fig. 3 for this heating 
rate, where the freezing temperature, To, is also 
shown. It can be noticed that the condition 
0 = T is reached in both cases at T <  T c, 
ensuring then that the alloys are in dynamic 
equilibrium at T~-. Therefore the value of  
selected is appropriate and the enthalpy associ- 
ated with those thermograms represents AHc. In 
computing this enthalpy, after each run, the data 
were converted to plots of  differential heat 
capacity against temperature, using a previously 
established calibration for the DSC cell. Subse- 
quently, a linear base line was substracted from 
the data for each alloy. This base line represents 
the temperature dependent heat capacity of  the 
copper-aluminium solid solutions and the exist- 
ing ordered domains, and its value was in agree- 
ment with the Kopp-Neumann  rule. The 
remainder, the differential heat capacity, ACp, 
represents the heat associated with the dissol- 
ution reaction. The area of  the reaction peak in 
the ACp-T curves between the critical and final 
temperatures characterizes AH~. The above data 
reduction procedure has been previously des- 
cribed in the literature [15, 16]. 

For  e = 0.033 K sec -l, dynamic equilibrium 
can be achieved at T < T~ and since a dissol- 
ution peak is displayed on the DSC traces for 
such e, a finite volume fraction exists at T~-, and 
hence the precipitates dissolve by a first order 
transformation. This result is extended also to 
Cu-6.5A1. 
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Figure 3 DSC thermograms for eCu-A1 alloys 
furnace cooled at a rate of 15 Kh -l. Region II: 
volume fraction equilibration. Region III: 
disperse order domain dissolution. 

Before computing a from Equation 11, values 
V~ and Dc are required. For  these alloys 
AHp = 412Jmol  l [13], MWp = 55.2kgmol -~, 
0p = 7.22 x 103kgm -3 and 0s = 8.3 x 103/ 
8,5 x 103/8.7 x 103kgm -3 for 19/13/6.5A1. 
With the above data, V~ can be computed by 
means of  Equation 19. Do and N were measured 
electron microscopically at room temperature 
[7]. The values obtained for Do were 20 and 
10nm for alloys containing 15 and 1 0 a t %  AI, 
respectively, while N = 6 x 1022m -3 was 
the same for both A1 concentrations. On the 
other hand, the enthalpy associated with the 
thermograms of Fig. 2 corresponding to e = 
0.83 K sec -~ gives AH0, which represents essen- 
tially the dissolution energy of  the precipitate 
volume fraction prevailing at room temperature. 
It can easily be shown in O-T plots constructed 
with ~ = 0.83 K sec -~, that the condition 0 = T 
is always reached far above the fictitious critical 
temperature determined for this value of  e. 
Hence by means of Equations 2 and 17, con- 
sidering that V 0 oc AH0, values for D~ can be 
estimated. All the above data are summarized in 
Table I together with the computed values for a 

obtained for Equation 11. (The values of  V~ 
employed, in Equation 11 were determined as set 
out below*.) 

Calculations considering both the chemical 
and the geometrical contributions to solid state 
interfaces [4], show that typical values in the 
range of 10 to 200 mJ m -2 are characteristic for 
coherent interfaces where there are no geometri- 
cal contributions and 100 to 1000mJm-2 for 
semi-coherent and non-coherent interfaces. 
Therefore, it is expected that ordered domains 
are fully coherent for alloys containing up to 13 
to 14 at % A1, while for alloys containing more 
than 15 at % A1, geometrical contributions must 
exist. The computed values for a are in excellent 
agreement with the experimental predictions, 
since for Cu-18A1, a transition from disperse 
order characterized by coherent precipitates [5, 
6] to a microdomain structure was found [6;19]. 
Furthermore, if the transition from coherence to 
semi-coherence is analysed in terms of the com- 
puted values of De, the results are also in agree- 
ment with those expected via a. In so doing, it is 
necessary to estimate Dcr, the critical diameter at 
which perfect coherence breakdown takes place. 

*The m o l a r  vo lume V~ of  the ordered  d o m a i n s  is based  on the s to ich iomet r ic  Cu 3 A1 "molecu le" .  Since there is one 
molecu le /un i t  cell, V m = N O d 3, where  N O is the A v o g a d r o  n u m b e r  and  d is the la t t ice  pa rame te r  o f  the uni t  cell, 0.37 m. This  
va lue  was  de te rmined  f rom Vegard ' s  law as a first app rox ima t ion .  Vm = 30.75 • 10 _6 m 3 m o l -  m. A value  for Cp = 0.228 was  

employed  [17]. 
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T A B L E I Particle-matrix specific interfacial energies for ~Cu-A1 alloys 

at % T~ D o Do AH o AHo V o Vr a t 
A1 (K) (nm) (nm) (Jmol -I ) (Jmol i) (mJm-2)  

19 522 27 24 266 164 0.55 0.4 498 ___ 19 
15 511" 20* 17.2 93+ 75+ 0.23 0.18 253 _+ 8 
13 537 16.2 13.6 50 19.3 0.12 0.07 93 _+ 4 
10 536* 10" 9.4 12 t 9.0+ 0,03 0.022 30 _+ 1,5 
6.5 543 7.8 5.8 5.8 4.3 0.015 0.01 16 _+ I 

*From [18]. 
*Interpolated values. 
*Average values computed from five DSC runs. 

According to the simple criterion by Brooks [20], 
Dcr is related to the length of the interface 
required to build a misfit equal to the Burgers 
vector b(= 0.26 nm) of an interface dislocation. 
It can be expressed as: 

3b 
D e , -  6 '  (27) 

whereby 6 is the atomic volume misfit. On the 
copper-rich side of Cu-A1, 5 is of the order of 
0.051 [21]: Dcr = 15.4nm, thus indicating that 
full coherence breakdown at a composition 
somewhat lower than 15A1, as predicted by the 
former arguments. Therefore, the use of 
Equation 27 in conjunction with Equations 11 
or 14 allow one to estimate the limiting specific 
interfacial enthalpy for a particular dispersed 
phase associated to the loss of coherence with 
the matrix. 

The method developed here to measure a is, in 
principle, applicable also to particles dissolving 
by a first order transformation but undergoing 
coarsening. In this case an equilibrium particle 
diameter at each temperature does not exist (pre- 
cipitate size becomes system history dependent), 
hence volume fraction equilibration via particle 
size adjustment is not possible as in the previous 
situation. Furthermore, dynamic equilibration 
through simultaneous coarsening and change in 
particle number is not likely to be reached below 
To, since the DSC dynamic experiment is too 
rapid, even at low heating rates, to be able to 
monitor the coarsening rate. Therefore, if 
Equations 11 or 14 are applied for computing a, 
making use of non-isothermal calorimetric data, 
V~ (from Equation 19) and Dc (from Equation 17 
or 18) have no longer their assigned meanings 
but essentially they represent the volume frac- 
tion and average particle diameter existing after 
an anneal at a given temperature during a cer- 
tain time. (A characteristic feature is the time 

invariance of the volume fraction of the disperse 
phase during coarsening; in principle, there is a 
small increase due to the dependence of the 
equilibrium solubility on particle size, but this is 
considered negligible compared with the 
increase that occurs during precipitation.) Since 
that volume fraction is generally larger than the 
equilibrium value expected at To-, the corre- 
sponding dissolution enthalpy measured from 
the DSC trace should also be larger than AH~ 
and consequently, the computed value of ~r for 
the measured precipitate diameter may result in 
a somewhat overestimated value. More reliable 
values for a can be obtained if before the non- 
isothermal run is carried out, the alloy is 
annealed at a temperature as close as possible to 
Tc for different times in order to obtain different 
degrees of coarsening. The former analysis 
indicates the incidence of particle diameters on 
a, which are not revealed, in general, from deter- 
mination based upon isothermal coarsening 
kinetic experiments [22]. 

Other alloy systems for which particle specific 
surface enthalpy can be eventually determined 
on the grounds above, are those containing 
metastable precipitates against ripening. Meta- 
stability can be achieved by interaction energy 
effects between particles [23-25]. Since in these 
alloys stable linear arrays of precipitates elasti- 
cally locked are formed, impingement should be 
absent even at larger volume fractions. In this 
case, V~ x (Equation 3) instead of V (Equation 2) 
must be substituted into Equation 5 before the 
procedures reported here are undertaken, in 
order to evaluate a. If one designates the specific 
surface enthalpy for these microstructural stable 
arrays as aex, it is easy to demonstrate that: 

o'f 
= ,~ [ v J ( 1  - v~)] ae, = 1 -- V~ 

x I 1 / l n ( l _ - ~ l  V~)] 
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However, to date, no experiments reporting the 
order of the transformation associated to the 
dissolution process are available for such arrays 
and hence, it is not worth considering this case in 
more detail at the present time. 

In closing, it is notable that in a first order 
transformation, two phases can coexist in 
thermodynamic equilibrium at a temperature 
Tc, having usually different specific volumes at 
T~. In a solid material, this volume discontinuity 
must be accommodated either by elastic strains 
producing elastic stresses if the crystal lattices 
remain coherent across the interface, or by plas- 
tic deformation if the induced stresses are 
greater than the elastic limit [26]. The elastic 
strains can change the behaviour of the critical 
effects and even the nature of the transition [27]. 
Although these facts have been disregarded in 
this simplified approach, it still provides an easy 
and rapid method to estimate the specific inter- 
facial energy for precipitates or ordered domains 
dissolving by a first order transformation. 

Appendix 
The rate of  variation of c M and D with tem- 
perature may be obtained from Equations 6 and 
7. By evaluating the partial derivatives there 
involved we have: 

aCM 12Vm(~ - Vcp)(Cp - ~) In [1/(1 - V)] 
a T  T J  

(A1) 
and 

tgD 4 V m ( F -  Vcp) ( l  - -  V ) D  
(A2) 

a T  (% -- ~) T J  

where 

J = 3 D R T ( %  - ?) In [1/(1 - V)] 

-- (C, -- Vcp)4Vma. (A3) 

After imposing the boundary conditions: 

D = O , V  = O f o r T  = T + 

and 

J = 0 f o r T  = T~- 

it follows that: 

aCM 
- - >  0 f o r T <  To; 
#T 

6qCM 
= 0, CM = 6 f o r T >  T~ 

0T 

3 8 8 8  

CM  -Vc 
. . . .  i - V c  

rc 

CM = 

D =  Oc]  
I 
I 
I 

re" 

D = O  

Figure A1 Schematic illustration of the dependence of c M 
and D upon T under equilibrium conditions. 

and 

aD 
a--~< 0 f o r  T < T~; 

aD 
a--T = 0, D = 0 f o r T >  T~ 

as required. The functional dependence of CM 
and D with temperature is shown schematically 
in Fig. A1. 
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